Discriminative Training and Support V Language Call Ro

نویسندگان

  • Imed Zitouni
  • Hui Jiang
  • Qiru Zhou
چکیده

In natural language call routing, callers are routed to desired departments based on natural spoken responses to an open-ended “How may I direct your call?” prompt. Natural language call classification can be performed using support vector machines (SVMs) or the popular vector-based model used in information retrieval. We recently demonstrate how discriminative training is powerful to improve any parameterized vector-based classifier to achieve minimum classification error. Discriminative training minimizes the classification error by increasing the score separation of the correct from competing documents. It makes the classifier robust to feature selection, enabling fully automated training without the injection of human expert knowledge. Support vector machines received also a lot of attention in the machine learning community. They have often achieved better performance than customized neuronal network and state-of-the-art baseline classifiers. We investigate in this paper the classification power of SVMs and discriminative training approaches on natural language call routing. Experiments are reported for a banking call routing and for Switchboard topic identification task. Results show that the application of discriminative training on vector-based model outperforms SVMs by on spoken data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative training in natural language call routing

In this paper, we show how discriminative training can be used to improve classifiers used in natural language processing, using as an example the task of natural language call routing. In natural language call routing, callers are routed to desired departments based on natural spoken responses to an open-ended “How may I direct your call?” prompt. With vector-based natural language call routin...

متن کامل

Discriminative training of naive Bayes classifiers for natural language call routing

In this paper, we propose to use a discriminative training(DT) method to improve naive Bayes classifiers in context of natural language call routing. As opposed to the traditional maximum likelihood estimation, all conditional probabilties in Naive Bayes classifers (NBC) are estimated discriminatively based on the minimum classification error (MCE) criterion. A smoothed classification error rat...

متن کامل

Affordances and limitations of technology: Voices from EFL teachers and learners

With the developments of new technologies appearing very quickly, the attention has been focused more on technology than learning. English centers and institutes have mostly been busy accommodating new programs and technologies and hence have not spent enough time to evaluate the CALL programs and technologies employed to find their affordances and limitations. The present study was an attempt ...

متن کامل

Improving Non-native Speech Recognition Performance by Discriminative Training for Language Model in a CALL System

High non-native speech recognition performance is always a challenge for a CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning. Conventionally, possible error patterns, based on linguistic knowledge, are added to the ASR grammar network. However, the effectiveness of this approach depends much on the prior linguistic knowledge...

متن کامل

Pairwise Discriminative Speaker Verification in the 𝕀-Vector Space

This work presents a new and efficient approach to discriminative speaker verification in the i–vector space. We illustrate the development of a linear discriminative classifier that is trained to discriminate between the hypothesis that a pair of feature vectors in a trial belong to the same speaker or to different speakers. This approach is alternative to the usual discriminative setup that d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005